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Abstract

The structural modification of dynamical systems is an important issue in a wide range of applications,
for example in vibration suppression or in active and passive control. It is well known that for a
proportionally (or classically) damped system there always exists a real matrix of eigenvectors which
simultaneously diagonalizes the three system matrices of inertia, damping and stiffness, even if the system
possesses repeated eigenvalues. For general viscously damped systems the eigenvalue analysis must be
performed in state space, and for systems with distinct eigenvalues the corresponding eigenvectors
diagonalize the state space matrices. However, with general viscous damping, systems with repeated
complex eigenvalues may have insufficient linearly independent complex eigenvectors. These systems are
termed defective. In contrast to non-defective (or simple) systems, for defective systems only a Jordan
decomposition exists. In this paper conditions on rank 1; rank 2 and higher rank modifications are derived
which ensure that the modified system is simple. If none of the eigenvalues of the unmodified system is an
eigenvalue of the modified system then every rank 1 modification that produces a pair of repeated complex
eigenvalues leads to a defective system. Under the same assumptions there exist higher rank modifications
which lead to simple systems. Either these modifications produce a proportionally damped system, or the
restrictions on these modifications are rather strict which suggests that in practical cases every rank 2 or
higher modification that produces repeated pairs of complex eigenvalues will lead to a defective system. The
findings are demonstrated by simulated examples.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of the structural modification of dynamical systems has applications in areas
as such as model updating, system design and system control. Of particular interest are low-rank
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modifications [1,2]. The issue of defective systems has been neglected and is rarely mentioned in
the literature. Mottershead [3] has found that defectiveness can occur in cross receptances using a
rank 1 modification for zero-placements of undamped systems. Veseli!c [4] has shown that if a
system with a rank 1 damping matrix has a pair of repeated complex eigenvalues, that are not
eigenvalues of the original system, it is necessarily defective. This result has recently been extended
to proportionally damped systems [5], where it is demonstrated that a unit rank modification to a
classical damping matrix can produce a defective system. Based on this method the scope of this
paper is to extend these findings to higher rank modifications of the damping matrix.

Defective systems are relatively rare in practice, since exactly repeated eigenvalues are difficult
to obtain. However, systems with closely spaced eigenvalues are very common, and the accuracy
with which the eigenvalues may be calculated is significantly diminished if the corresponding
system with repeated roots is defective. Friswell and Champneys [6] demonstrated this using the
pseudospectra for simple examples, and motivated the investigation of defective systems.

Before discussing the system modification some notation and preliminary results will be
highlighted. Consider the general characteristic polynomial qðsÞ :¼ detðA þ sBÞ of a matrix pencil
ðA;BÞ: A second order system defined by the mass, damping and stiffness matrices M; C and K;
may be written in state space form. One possibility for A and B is

A ¼
0 K

K C

" #
; B ¼

�K 0

0 M

" #
: ð1Þ

Alternatively the characteristic polynomial may be obtained directly as qðsÞ :¼ detðs2M þ sC þ KÞ:
If l is a root of q then the smallest number nA ¼ nAðlÞAN for which

@nAqðsÞ
@snA

����
s¼l

a0 ð2Þ

is called the algebraic multiplicity of l; and the natural number

nGðlÞ ¼ nG :¼ n � rankðl2M þ lC þ KÞ ð3Þ

is called the geometric multiplicity of l: Note, that in general nGpnA: A root l is called defective if
nGonA: The second order system ðM;C;KÞ is called defective if q has a defective root; otherwise
the system is termed simple (or not defective) (see Ref. [7, p. 17]). Since the matrices M; C and K

are real, the complex eigenvalues will occur in conjugate pairs. Thus if a complex eigenvalue is
repeated, then so will the corresponding complex conjugate eigenvalue, and these will be referred
to as a pair of repeated complex eigenvalues.

The following analysis relies on the formula for the adjugate of a matrix. This expression is
given here for the general case.

Theorem 1. Suppose DðlÞ ¼ l2M þ lC þ K represents the n � n matrix pencil of the original

system. Providing l is not an eigenvalue of the original system, so that detðDÞa0; the adjugate of
SðlÞ ¼ ½DðlÞ þ lYY?�; where Y is an n � m matrix, is given by

Sad ¼ detðDÞ½D�1 detðIm þ lY?D�1YÞ � lD�1Y½Im þ lY?D�1Y�adY?D�1�; ð4Þ

where the explicit dependence of S and D on l has been dropped.
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Proof. For non-singular S; the Sherman–Morrison–Woodbury [8] formula gives

S�1 ¼ ½D þ lYY?��1

¼D�1 � lD�1Y½Im þ lY?D�1Y��1Y?D�1: ð5Þ

From Ref. [9, pp. 45–46] it is also known that

detðSÞ ¼ detðDÞ detðIn þ lD�1YY?Þ

¼ detðDÞ detðIm þ lY?D�1YÞ: ð6Þ

Combining these two formulae by using,

Sad ¼ detðSÞS�1 ð7Þ

for non-singular S; gives Eq. (4). Some care needs to be exercised when l is an eigenvalue of the
modified system, so that detðSÞ ¼ 0 and thus S is singular. However, it is readily apparent that the
expression for the adjugate on the right side of Eq. (4) is continuous except when l is an
eigenvalue of the original system and thus D is singular. Since it is assumed that the repeated
eigenvalue of the modified system is not an eigenvalue of the original system, Eq. (4) is continuous
and thus Eq. (4) holds at these values of l: &

2. Unit-rank modifications

Prells and Friswell [5] showed that a unit rank modification of a proportionally damped system
that produces pairs of repeated complex eigenvalues always leads to a defective system. In this
case m ¼ 1 and Y becomes the vector y: If l is an eigenvalue of the modified system then
detðSÞ ¼ 0: However, if l is not an eigenvalue of original system, then D is non-singular and
Eq. (6) implies that

detð1þ ly?D�1yÞ ¼ 0 ð8Þ

and thus Eq. (4) implies that

Sad ¼ �l detðDÞD�1yy?D�1: ð9Þ

Since l is not an eigenvalue of the original system and since ya0 the adjugate of S is always finite
and never zero. Thus it is now possible to prove the following theorem.

Theorem 2. If the damping matrix is modified by the addition of a rank 1 component such that the
resulting system has a repeated eigenvalue not present in the original system, then the modified

system is defective.

Proof. Since y is a non-zero vector, Eq. (9) shows that the rank of the adjugate of S is 1: If l is a
repeated eigenvalue of the modified system then it is known that

SSad ¼ detðSÞIn ¼ 0 ð10Þ
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and hence rankðSadÞ ¼ 1 implies that rankðSÞ ¼ n � 1: Thus there is at most one linearly
independent eigenvector associated with the eigenvalue l; and the unit-rank modification leads to
a defective system if it produces a repeated eigenvalue. &

3. Rank 2 modifications

The procedure adopted in this section is as follows. For a full-rank matrix YARn�2; the
determinant of S and the adjugate Sad of S may be evaluated. Under the assumption detðSðlÞÞ ¼ 0
but detðDðlÞÞa0 it may then be shown SadðlÞa0 if Y satisfies certain conditions. These conditions
define a class of modifications Y which lead to defective systems if repeated eigenvalues are
produced.

In a similar way to the rank 1 modification case, from Eq. (6) since detðSÞ ¼ 0 and
detðDÞa0;

detðI2 þ lY?D�1YÞ ¼ 0: ð11Þ

Thus Eq. (4) implies that

Sad ¼ �l detðDÞD�1YQadY?D�1; ð12Þ

where

Q ¼ I2 þ lY?D�1Y: ð13Þ

Using Eq. (10), a system with a repeated eigenvalue is simple if it has a full set of eigen-
values, which is given by the condition rankðSÞ ¼ n � 2; or rankðSadÞX2: Since rankðYÞ ¼ 2 and Q

is a 2� 2 matrix, the system is simple if rankðQadÞ ¼ 2: However from Eq. (11), detðQÞ ¼ 0 and
this implies that the adjugate can only be zero if Q ¼ 0: Thus the following theorem has been
proved.

Theorem 3. If the damping matrix is modified by the addition of a rank 2 component such that the
resulting system has a repeated eigenvalue not present in the original system, then the modified

system is defective unless the modification satisfies the condition

lY?D�1Y ¼ �I2: ð14Þ

Of course since the damping matrix is real, YARn�2 and Eq. (14) is equivalent to

Y? ReflD�1gY ¼ �I2; ð15Þ

Y? ImflD�1gY ¼ 0: ð16Þ

Two questions arise:

(1) Does there exist a YARn�2 satisfying Eqs. (15) and (16)?
(2) If there exists such a modification Y; does it correspond to a meaningful and/or realisable

damper configuration?
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It is clear that modifications do exist that can satisfy Eqs. (15) and (16), however this is a low-
dimensional subspace of all modifications that produce repeated eigenvalues. Thus unless the
modification is carefully designed, any modified system that has pairs of repeated complex
eigenvalues is very likely to be defective. As a consequence the questions given above are
somewhat academic, although computing modifications that lead to simple systems do highlight
the fact that such modifications are relatively rare. The particular case of modifications to a
proportionally damped system is considered in a later section.

4. Higher rank modifications

For modifications higher than rank 2 a similar procedure may be adopted to obtain the
conditions required for a system to be simple. However a number of different cases arise
depending on algebraic and geometric multiplicities of the repeated eigenvalue. Consider the case
where m ¼ 3; that is when the modification is of rank 3: Define,

Q ¼ I3 þ lY?D�1Y: ð17Þ

In a similar manner to the rank 2 modification, from Eq. (6), detðQÞ ¼ 0: Assume that the
repeated eigenvalue has an algebraic multiplicity of 2: The system is simple if the geometric
multiplicity is also 2; which occurs if rankðSÞ ¼ n � 2; or rankðSadÞX2: From Eq. (12), this implies
that rankðQadÞX2 and hence the condition for a simple system is that rankðQÞp1: This condition
may be written as

lY?D�1Y ¼ aaT � I3; ð18Þ

for some vector aAR3: If the algebraic multiplicity is 3; then by a similar argument the condition
for a simple system is that Q ¼ 0: Of course in both cases, the modified system must also yield
pairs of repeated complex eigenvalues, that were not eigenvalues of the unmodified system. The
conditions required to produce a simple system with repeated eigenvalues for these higher rank
modifications is rather complicated, and will not be considered further in this paper.

5. Low-rank modifications of a proportionally damped system

The conditions derived in the previous sections have made no assumptions about the
damping in the original system. This section will restrict attention to cases where the original
system is proportionally damped. Finding simple systems with repeated pairs of complex
eigenvalues is difficult, and this section will give a method to generate simple systems with
repeated eigenvalues. It should be emphasized that the proposed procedure will not generate all
possible solutions.

Caughey and O’Kelly [10] called the system Ml2 þ Clþ K; where M is non-singular,
proportionally (or classically) damped if scalars ci; i ¼ 0;y; n � 1; exist such that

C ¼
Xn�1

i¼0

ciMðM�1KÞi: ð19Þ
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If MARn�n is positive definite and C;K positive semi-definite then for proportionally damped
systems the matrix X0ARn�n of eigenvectors of the undamped system will also diagonalize the
damping matrix C: Such damping matrices are called proportional or classical.

Denote the modally transformed unmodified system by

Dðl0Þ :¼ l20In þ 2l0C0X0 þ X2
0; ð20Þ

where C0 ¼ diag½z0i� and X0 ¼ diag½o0i� are diagonal matrices of the damping ratios and natural
frequencies respectively. Hence, X?

0 MX0 ¼ In; X?
0 CX0 ¼ C0X0 and X?

0 KX0 ¼ X2
0; where

X0ARn�n is the matrix of mass normalised eigenvectors of the proportionally damped system.
The modified system is denoted by SðlÞ :¼ DðlÞ þ lYY? where YARn�m;mAf1; 2g:

Without loss of generality, the following discussion will assume that the unmodified system has
been transformed to modal co-ordinates. This is possible because Eq. (14) is invariant with respect
to the modal transformation. Thus,

Y?D�1Y ¼ Y?X�1
0 ðl2M þ lC þ KÞ�1X�?

0 Y ð21Þ

and X�?
0 Y is the corresponding rank 2 modification of l2M þ lC þ K:

This section will concentrate on the existence of modifications to produce a simple system,
rather than the physical realization of these modifications. Since D is diagonal, DðlÞ ¼ diag½piðlÞ�;
where piðlÞ ¼ l2 þ 2z0io0ilþ o2

0i: By definition lD�1 ¼ diag½l=piðlÞ� and

Re
l

piðlÞ

� �
¼ �

o

jpij2
ðz½o2 þ o2

0i� � 2o0iz0ioÞ; ð22Þ

Im
l

piðlÞ

� �
¼ �

Imflg

jpij2
ðo2 � o2

0iÞ; ð23Þ

where l ¼ �zoþ jo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
:

In the light of Eq. (16) the diagonal matrix given by Eq. (23) has to have at least 2 entries equal
to zero, in which case o ¼ o0i ¼ o0k for at least 2 indices iak; or alternatively o0ioooo0iþ1 for
some iX2; if the eigenvalues are ordered as o01p?po0n: Before exploring this in detail a special
case will be studied.

5.1. Results for 2 degrees of freedom systems

Consider the case n ¼ 2 then, by assumption, YAR2�2 is non-singular and hence Eq. (14) is
equivalent to

YY? ¼ �
1

l
DðlÞ: ð24Þ

This equation holds true only if the imaginary part of the right side is zero and if the real part is
positive definite. By definition

�
piðlÞ
l

¼ �
%l

jlj2
ðl� l0iÞðl� %l0iÞ ð25Þ

¼ �
1

jlj2
ðjlj2 Reflg � 2jlj2 Refl0ig þ jl0ij2 ReflgÞ � j

Imflg

jlj2
ðjlj2 � jl0ij2Þ; ð26Þ
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where the bar denotes the complex conjugate. The imaginary part becomes zero if jlj ¼ o ¼
o0i ¼ jl0ij: Hence a necessary condition is that the unmodified system has equal natural
frequencies o01 ¼ o02: Inserting this result into the expression for the real part the condition to be
positive definite is equivalent to

Refl0ig > Reflg ð27Þ

which is, by definition, equivalent to

z > maxðz01; z02Þ: ð28Þ

However, in this case the modification YY? ¼ �DðlÞ=l is diagonal, and hence the modified
system is classically damped. This is summarized in the following theorem.

Theorem 4. If the damping matrix of any 2 degree-of-freedom proportionally damped system is

modified by the addition of a rank 2 component such that the resulting system is non-proportionally
damped and has a pair of repeated complex eigenvalues, then the modified system is defective.

5.2. The general case

The findings of the preceding example can be extended to the general case of a modification
YARn�2: The purpose for this extension is to outline a procedure to generate a simple non-
proportionally damped system with repeated eigenvalues. This procedure will be demonstrated by
a numerical example later in this paper.

First suppose, without loss of generality, that o ¼ o01 ¼ o02: Then the first two diagonal
elements of the diagonal matrix given by Eq. (23) are zero and the remaining n � 2 diagonal
entries are positive. Hence Eq. (16) holds true only if the last n � 2 rows of YARn�2 are zero. For
arbitrary z > maxðz01; z02Þ the first two diagonal elements of the diagonal matrix given by Eq. (22)
are positive and for an arbitrary orthonormal matrix ZAR2�2 the matrix

Y ¼
GZ

0

" #
; ð29Þ

where

G ¼
ffiffiffiffiffiffi
2o

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z01

p
=jp1ðlÞj 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z02

p
=jp2ðlÞj

" #
ð30Þ

leads to a diagonal modification of the damping matrix. Hence also in this general case the
modified damping matrix is diagonal and therefore the modified system is classically damped.

Now consider the case when the diagonal matrix given by Eq. (23) is non-singular. Suppose

Y ¼ Yp

Ys

h i
; where YpAR2�2 is non-singular. Also assume that o02oooo03: Then the diagonal

matrix defined by Eq. (23) may be written as

ImflD�1g ¼ D ¼
�Dp 0

0 Ds

" #
; ð31Þ
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where Dp is 2� 2 and Ds is ðn � 2Þ � ðn � 2Þ; and both matrices are positive definite. Now the

condition given by Eq. (16) becomes

Y?DY ¼ �Y?
p DpYp þ Y?

s DsYs ¼ 0 ð32Þ

and since Yp is non-singular this equation is equivalent to

Dp ¼ Z?DsZ; ð33Þ

where Z ¼ YsY
�1
p : For nX4 let HARðn�2Þ�2 be an arbitrary orthonormal matrix, that is H?H ¼

I2: Then the matrix

Z ¼ D�1=2
s HD1=2

p ð34Þ

is a solution of Eq. (33) and hence for arbitrary non-singular HAR2�2

Y ¼
I2

D�1=2
s H D1=2

p

" #
H ð35Þ

satisfies Eq. (16). In order to determine H; first note that the diagonal matrix given by Eq. (22) is
positive definite if

z >
2o0io

ðo2 þ o0iÞ
z0i ð36Þ

and since
2o0io

ðo2 þ o0iÞ
p1 ð37Þ

a sufficient condition is

z > maxiðziÞ: ð38Þ

Let the diagonal matrix Y ¼ �ReflD�1g: Using the same partition as for D then the condition
given by Eq. (15) becomes

Y?YY ¼ H?½Yp þ D1=2
p H?D�1

s YsH D1=2
p �H ¼ I2: ð39Þ

Since the matrix in the square brackets is positive definite it can be written as P?P for some

non-singular matrix PAR2�2 and hence H ¼ P�1: Note that this solution requires

(1) o02oooo03;
(2) z > maxiðziÞ;
(3) nX4:

Although Y ¼ YðHÞ represents a set of solutions, it may well be that there are other solutions
which do not satisfy the above conditions. Some of these alternative solutions will be considered
in Section 5.4.

5.3. A numerical example

Consider an undamped, 4 degree-of-freedom, mass–spring chain system, clamped at one
end. The masses are assumed to be equal, mi ¼ 1 kg, i ¼ 1; 2; 3; 4; and the spring stiffnesses are
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k1 ¼ k4 ¼ 3 N=m and k2 ¼ k3 ¼ 2 N=m: Thus the stiffness matrix is

K ¼

3þ 2 �2 0 0

�2 2þ 2 �2 0

0 �2 2þ 3 �3

0 0 �3 3

2
6664

3
7775: ð40Þ

The natural frequencies of this system are, to 4 decimal places,

X0 ¼ diagð0:5354; 1:6031; 2:4495; 2:8536Þ: ð41Þ

The natural frequency and damping ratio of the repeated eigenvalue l ¼ �ozþ jo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is

chosen to be

o ¼ 2; z ¼ 0:4: ð42Þ

Of course, the eigenvalues occur in conjugate pairs, and choosing l to be repeated also means that
%l is repeated. With H ¼ I2;

Y ¼

�0:8913 0

0 1:0009

�1:4022 0

0 1:2345

2
6664

3
7775 ð43Þ

and the modified system has eigenvalues

K ¼ diagð�0:5802þ 0:3056j;�0:8000þ 1:8330j;�0:8000þ 1:8330j;�0:4629þ 2:2401jÞ ð44Þ

which corresponds to

X ¼ diagð0:6558; 2; 2; 2:2874Þ; ð45Þ

C ¼ diagð0:8848; 0:4; 0:4; 0:2024Þ: ð46Þ

Note that the modification has increased the two lowest frequencies from 0:5354 and 1:6031 to
0:6558 and 2:0 rad=s; respectively; a phenomenon that is characteristic for non-proportional,
general viscous damping.

The matrix of eigenvectors of the modified system, XAC
4�4; is indeed non-singular and given to

4 decimal places by

X ¼

�1:1266þ 1:1180j �0:2563� 0:2918j 0 0

0 0 0:6405� 0:3477j �0:0896� 0:5453j

�0:0645þ 0:2463j �0:4102þ 0:3343j 0 0

0 0 �0:0226� 0:4276j �0:4804þ 0:2202j

2
6664

3
7775: ð47Þ
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The distribution of zeros in Y and X is due to the choice of H ¼ I2: To investigate the effect of this
choice on the eigenvalues of the modified system attention is restricted to a rotation

HðfÞ ¼
cosðfÞ �sinðfÞ

sinðfÞ cosðfÞ

" #
: ð48Þ

Since the modification Y ¼ YðfÞ depends on f the eigenvalues of the modified system l ¼ lðfÞ
also depends on f: Fig. 1 shows this dependency for the real part (top) and the imaginary part
(bottom) of l: Note that for certain ranges of f; indicated by the vertical lines, the resulting
system has one real eigenvalue. Note also that the chosen repeated eigenvalue (horizontal lines) is
not affected by the rotation angle.

Although the above modification leads to a non-defective system with a repeated eigenvalue the
realization of such a modification is an open problem. The back-transformation of YY?; i.e.
X�?

0 YY?X�1
0 ; leads to a fully occupied damping matrix which would be difficult to implement

physically. Whether a non-defective system with a repeated eigenvalue can be generated by varying
a given damper arrangement is an interesting problem but beyond the scope of this investigation.

5.4. A theorem on rank 2 modifications

The discussion of alternative solutions of Eqs. (15) and (16) is now continued. The detailed
study of the general solution requires consideration of conic sections, and is beyond the scope of
this paper. Instead solutions that do not require the first two conditions given at the end of
Section 5.2 will be derived.

Theorem 5. Let 2prpn � 2; and suppose o0roooo0rþ1; then the diagonal matrix defined by
Eq. (23) can be partitioned as

�lD�1 ¼ D ¼
D1 0

0 �D2

" #
; ð49Þ

ARTICLE IN PRESS

0 1 2 3 4 5 6

-2

-1

0

φ (rad)
re

al
(λ

)

0 1 2 3 4 5 6

0

1

2

φ (rad)

im
ag

(λ
)

Fig. 1. Dependency of the eigenvalues on the choice of the rotation to define the modification.

M.I. Friswell et al. / Journal of Sound and Vibration 279 (2005) 757–774766



where D1ARr�r and D2ARðn�rÞ�ðn�rÞ are positive definite. Moreover, let UARr�2 and VARðn�rÞ�2 be

orthonormal matrices. Then

Y ¼
1ffiffiffi
2

p D�1=2
1 U

D�1=2
2 V

" #
H ð50Þ

satisfies Eq. (16) for arbitrary HAR2�2: Let Y1 and Y2 denote the corresponding partitions of the

diagonal matrix defined by Eq. (22). If

U?D�1
1 Y1U þ V?D�1

2 Y2V ð51Þ

is positive definite, then H can be chosen in such a way that Y satisfies Eq. (15).

Proof. That Y given in Eq. (50) satisfies Eq. (16) follows directly from calculation. If the matrix in
Eq. (51) is positive definite, its singular value decomposition is of the form LN2L? and hence
H ¼ LN�1: Note that Y ¼ YðU;VÞ represents a solution space generated by varying the two
orthonormal matrices U and V which can be used to ensure condition given by Eq. (51) is satisfied
if the number of positive diagonal elements of Y1 and Y2 is at least 2: This is necessary for the
non-singularity of U and V: The rows in U and V which are associated with the negative diagonal
elements of Y1 and Y2; respectively, may be set to zero. &

This approach will be demonstrated by a non-trivial example.

6. Two simulation examples

In this section two examples of undamped finite element models will be studied. In the
first example, a repeated eigenvalue of a 33 degree-of-freedom model will be placed by using a
rank 2 non-proportional damping matrix which has been calculated from Eqs. (15) and (16).
Indeed, the resulting system is simple. The second example is a 46 degree-of-freedom model with a
rank 2 non-proportional damping matrix which produces some clustered eigenvalues. The
conditions given in Eqs. (15) and (16) will be checked for the clustered eigenvalues. The singular
values of the associated eigenvectors reveals that one pair of the clustered eigenvalues is indeed
defective.

6.1. Non-defective bridge model with a repeated eigenvalue

A small bridge of length 6 m is modelled by 12 Euler–Bernoulli beam elements as shown in
Fig. 2. The unmodified system is undamped. Each beam element has the same physical properties:
length 0:5 m; density 105 kg=m3; cross-sectional area 10�4 m2; area moment of inertia 10�4 m4;
moment of inertia 40 kg m2 and modulus of elasticity 70 GN=m2: Each of the 11 nodes has 3
degree-of-freedom, two translational ux; uy and one rotational txy: Hence the entire model has 33
degree-of-freedom. The first 12 modes are shown in Figs. 3 and 4, together with the corresponding
eigenfrequencies.

ARTICLE IN PRESS

M.I. Friswell et al. / Journal of Sound and Vibration 279 (2005) 757–774 767



Using the real-valued modal matrix of the undamped model the mass and stiffness matrix
are transformed to diagonal form. Since the eighth and ninth eigenfrequencies are adjacent
the repeated eigenvalue, l ¼ �ozþ jo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is chosen with o ¼ 650p rad=s and z ¼ 0:4:

This choice of the repeated eigenvalue implies o07oooo08 and hence the two ortho-
normal matrices U and V are 7� 2 and 26� 2; respectively. The following simple case is
chosen.

U ¼
I2

0

" #
AR7�2; V ¼

I2

0

" #
AR26�2: ð52Þ

Since the unmodified model is undamped the matrix given by Eq. (51) is positive definite for every
choice of U and V: The rank 2 matrix Y has the corresponding block-diagonal structure

Y ¼ ½4:1252e1 þ 28:582e8; 5:8525e2 þ 28:575e9�AR33�2; ð53Þ

where ei denotes a vector of zeros except a 1 in the ith entry.
The resulting non-proportionally damped modified system is, indeed, non-defective. To

compare the effect on the mode shapes the rank 2 damping modification has been back-
transformed using the real-valued modal matrix of the undamped model. The solution of the
eigenvalue problem yields a complex modal matrix X ¼ ½x1;y;x33�AC

33�33: The first 12 modes
are shown in Figs. 5 and 6 where Refxig and�Imfxig are plotted in each frame, except the second
and third frame of Fig. 6 where the real and imaginary parts of the mode shapes are shown.
Obviously, there is no significant difference between the real and the negative imaginary part for
all modes except for modes 8 and 9 which are associated with the repeated eigenvalue. Indeed,
these two mode shapes are strongly correlated and similar to the second mode shape. Although
the modeshapes of x8 and x9 look alike, the eigenvectors x8 and x9 are linearly independent which
is confirmed by the condition number of the matrix ½x8 x9�; which is E354: The differences are
mainly due to the vertical displacements uy and the slopes txy:

Note that only eigenvalues l1 and l2 and the repeated eigenvalue l ¼ l8 ¼ l9 have non-zero
real parts and that the rank 2 damping has no significant effect on the eigenfrequencies. It is
amazing that the mode shapes associated with the eigenfrequencies o08 and o09 of the unmodified
system have disappeared (Fig. 4, frames 2 and 3). All other modeshapes are preserved.

Clearly, the correlation between modes 2; 8 and 9 is due to the structure of Y which depends on
the choice of the orthonormal matrices U and V: It seems that the choice of U and V enables some
control over the correlated modes. But this needs further investigation. Again, it should be
emphasized that the realization of such a damping configuration is difficult. Although Y has a
simple sparse structure the back-transformation yields an almost fully populated damping matrix

ARTICLE IN PRESS

Fig. 2. Simple beam model of a small bridge consisting of 12 Euler–Bernoulli beam elements.
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which corresponds to a rather unrealistic damper configuration. Whether a different choice of U

and V can guarantee a realistic (simple) damper arrangement needs to be investigated.

6.2. Two cantilevers connected by two dashpots

In practical applications defective eigenvalues are rarely repeated exactly. It is more common
that eigenvalues are clustered, i.e., they are close but numerically not equal. The question of
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Fig. 3. The first 6 eigenmodes of the bridge model.
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whether a set of clustered eigenvalues can lead to a defective system may be answered by checking
the conditions given by Eqs. (15) and (16). This will be demonstrated by an example.

Fig. 7 shows the model of a beam element structure. Both beams are made of steel, and are of
length 1 m; width 50 mm and depth 25 mm: Only bending in the most flexible plane is considered.
The first beam is clamped at both ends, whereas the second beam is only clamped at the left end.
Both beams are divided into 12 Euler–Bernoulli beam elements. At the fourth and eighth nodes
from the left end the beams are joined by two dashpots, whose damping values are calculated to
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Fig. 4. Eigenmodes 7 to 12 of the bridge model.
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produce repeated eigenvalues. The values are approximately c1 ¼ 4:0238 N s=m and c2 ¼
0:24994 N s=m: The corresponding rank 2 modification is

Y ¼ X?
0

ffiffiffiffi
c1

p
ðe7 � e29Þ;

ffiffiffiffi
c2

p
ðe15 � e37Þ

� �
; ð54Þ

where X0AR46�46 is the modal matrix of the undamped model. Table 1 shows the first 15 pairs of
eigenvalues of the modified system (to five significant figures).
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Clearly, the pairs (4,5), (6,7), (10,11), (12,13) and (14,15) of eigenvalues are clustered. As
expected, none of the corresponding ten eigenvalues satisfy the condition given by Eq. (14). In
particular, for the first pair the maximum absolute value of the error in Eq. (14) is about 1. Taking
the singular value decomposition of the five matrices each consisting of the two corresponding
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Fig. 6. The real and negative imaginary parts of modeshapes 7 and 10 to 12, and the real and imaginary parts of

modeshapes 8 and 9, of the modified bridge model.
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eigenvectors leads to the following condition numbers:

ð4; 5Þ-condE2:2� 105;

ð6; 7Þ-condE2:1;

ð10; 11Þ-condE2:3;

ð12; 13Þ-condE1:02;

ð14; 15Þ-condE1:05:

This means that the eigenvectors associated with pair ð4; 5Þ are close to being linearly dependent,
and thus the system is, in practice, defective.

7. Conclusions

This paper has investigated low-rank modifications of the classical damping matrix and
determined whether, if the modified system possesses pairs of repeated complex eigenvalues, the
resulting system is defective. For unit rank modifications, if the system has repeated eigenvalues
(that were not eigenvalues of the unmodified system), and the damping is non-proportional, then
the system will be defective. Extending this result for the unit rank case, the condition on a rank 2
modification has been presented that ensures the modified system is simple, even if it possesses
pairs of repeated complex eigenvalues and non-proportional damping. A procedure to generate
modifications that produce simple systems with repeated eigenvalues has been given and
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Fig. 7. Two cantilever beams connected by two dashpots.

Table 1

The first 15 eigenvalues for the beam example

Mode Mode

1 �3:7955� 10�27j1:3072� 102 8 �3:7557� 10�17j7:4399� 103

2 �2:9613� 10�17j8:1922� 102 9 �5:7551� 10�27j7:4399� 103

3 �3:3462� 10�17j8:3180� 102 10 �4:1203� 10�17j1:1130� 104

4 �4:5131� 10�17j2:2936� 103 11 �4:1157� 10�17j1:1131� 104

5 �4:5130� 10�17j2:2936� 103 12 �2:9985� 10�27j1:5583� 104

6 �3:3016� 10�27j4:4970� 103 13 �2:9832� 10�27j1:5587� 104

7 �3:3876� 10�27j4:4971� 103 14 �2:2667� 10�17j2:0821� 104

15 �2:2775� 10�17j2:0831� 104
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demonstrated by simulated examples. This condition is readily extended to higher rank
modifications. The important conclusion from this exercise is that defective systems may be
much more common in practice than originally thought. Indeed, if a modified system has repeated
eigenvalues and non-proportional damping, then it is very likely to be defective. The ramifications
for the dynamic analysis of such systems is under investigation. However, at the very least, the
results highlight that care is required in the calculation of the eigenvalues of damped structures
with pairs of repeated or clustered complex eigenvalues.
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